Investigating Pirate Bob's low velocity deflections for iron bolts vs steel armor:
What can cause an iron bolt at shoot force 47, which normally deflects, to hit?
- Increasing bolt weight from 1.18 to somewher less than 1.95 using bolt SIZE or bolt material SOLID_DENSITY. Increasing bolt weight to 2.01 causes the bolt to deflect again, because of how velocity is determined when the bolt is launched.
- Increasing armor IMPACT_STRAIN_AT_YIELD (bruising muscle only, and occasional deflections).
- Increasing armor IMPACT_YIELD
- Decreasing armor IMPACT_FRACTURE.
What can cause an iron bolt at shoot force 50, which normally hits (only causing bruising!), to deflect?
- Increasing armor LAYER_SIZE.
- Increasing bolt CONTACT_AREA.
- Increasing armor IMPACT_FRACTURE (weaker bruising and more deflections).
- Increasing armor IMPACT_FRACTURE and then increasing IMPACT_YIELD (total deflection).
- Increasing armor IMPACT_FRACTURE and then lowering IMPACT_STRAIN_AT_YIELD (total deflection).
- Lowering IMPACT_STRAIN_AT_YIELD (default is 940, lowering to ~900 gives weaker bruising and more deflections, lowering to ~840 gives total deflection).
What is the precedence of deflection?
1. The game compares SHEAR_YIELD of armor and weapon, and decides if blunt or edged damage will take place.
2. If blunt, then the ricochet check is made.
3. If the projectile didn't ricochet, then this deflection mechanism is examined.
Insight/wild guessing:
- The bolt's momentum is used as a pseudo-energy.
- The pseudo-energy is distributed across a certain contact area and thickness of armor material.
- The IMPACT_* properties of the armor are used to determine the energy requirement to first yield and then fracture the armor. See
http://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve and
http://en.wikipedia.org/wiki/Modulus_of_Resilience- If the bolt deflects, then the IMPACT_YIELD and IMPACT_STRAIN_AT_YIELD were enough to absorb all of the pseudo-energy.
- If the bolt hits but only causes bruising, then the distance between IMPACT_YIELD and IMPACT_FRACTURE was sufficient to absorb a lot of energy and only dent the armor.
- If the bolt hits at high velocity (say 1000 instead of 47 or 50), the armor is shattered and the blunt force is directly applied to the underlying skin.
- If the armor has a large IMPACT_STRAIN_AT_YIELD, the blunt force is directly applied to the underlying skin. This also seems to happen for flexible clothing and mail in some situations.
Implication of guess:
- If a silver bolt from a vanilla crossbow hits adamantine armor, it doesn't cut the armor or ricochet. Adamantine is perfectly rigid, so there will be no pre-fracture strain. This means that the blunt damage is sufficient to shatter the adamantine armor and deal damage to the tissue below. This is consistent with modding creatures to have adamantine skin, which will be shattered/smashed apart by the bolt.
VANILLA CROSSBOWS PROVIDE SO MUCH PSEUDO-ENERGY TO THE BOLT, YOU HAVE TO NERF THEM TO FIRE AT 5% VELOCITY TO LET ARMOR EVEN HELP TO STOP THE BOLT.
- Toady is probably missing a few zeroes somewhere in the calculations.